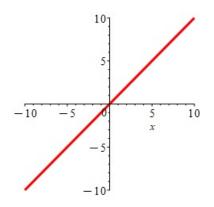
Section 12.1: 3-Dimensional Coordinate Systems

Problem 1. Consider the equation y = x.

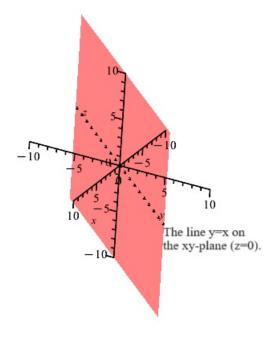
(a) Describe the type of curve this equation represents in \mathbb{R}^2 (on the *xy*-plane). Draw a rough sketch of the curve.

(b) Describe the type of surface this equation represents in \mathbb{R}^3 . Draw a rough sketch with axes in standard position.

(a) The equation represents the diagonal line y = x on the *xy*-plane.

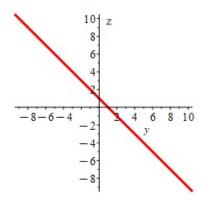


(b) The equation represents the vertical plane that passes through the line y = x on the *xy*-plane.

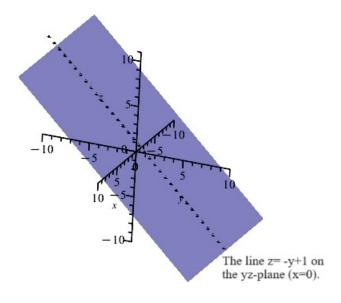


Problem 2. Consider the equation y + z = 1. (a) Describe the type of curve this equation represents in \mathbb{R}^2 (on the *yz*-plane). Draw a rough sketch of the curve. **HINT:** Let the *z*-axis be vertical. (b) Describe the type of surface this equation represents in \mathbb{R}^3 . Draw a rough sketch with axes in standard position.

(a) The equation represents the diagonal line z = -y + 1 on the *yz*-plane.

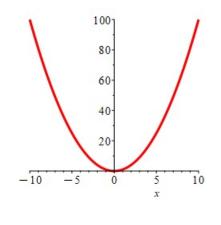


(b) The equation represents a diagonal plane that passes through the line z = -y + 1 on the *yz*-plane.

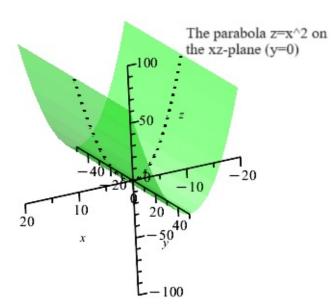


Problem 3. Consider the equation $z = x^2$. (a) Describe the type of curve this equation represents in \mathbb{R}^2 (on the *xz*-plane). Draw a rough sketch of the curve. **HINT:** Let the *z*-axis be vertical. (b) Draw a rough sketch of the surface with axes in standard position in \mathbb{R}^3 . **This surface is called a parabolic cylinder in** \mathbb{R}^3 .

(a) The equation represents the parabola $z = x^2$ on the *xz*-plane.

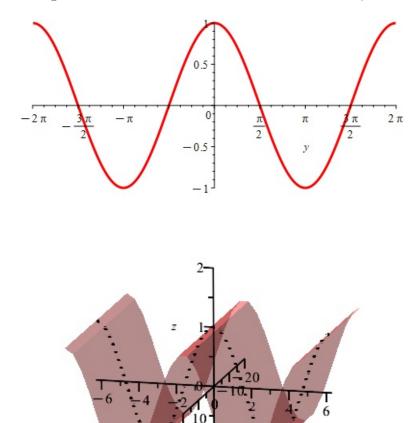


(b)



Problem 4. Consider the equation z = cos(y). (a) Describe the type of curve this equation represents in \mathbb{R}^2 (on the *yz*-plane). Draw a rough sketch of the curve. **HINT:** Let the *z*-axis be vertical. (b) Draw a rough sketch of the surface with axes in standard position in \mathbb{R}^3 .

(a) The equation represents the curve of cosine z = cos(y) on the *yz*-plane.



20

(b)

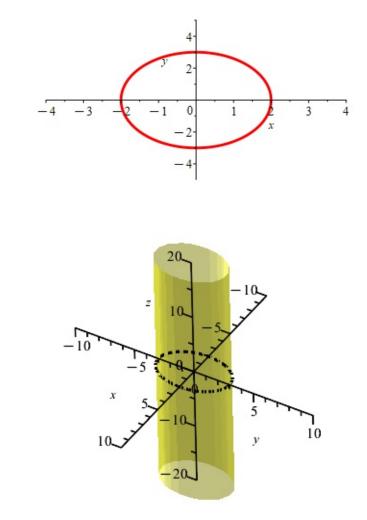
Problem 5. Generally, the equation

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1,$$

where *a*, *b*, *h*, and *k* are constants, represents the equation of an **ellipse** centered at (h,k) in \mathbb{R}^2 . Think of *a* as the "horizontal radius" and *b* as the "vertical radius" of the ellipse, respectively.

Consider the equation $\frac{x^2}{4} + \frac{y^2}{9} = 1$. (a) Draw a rough sketch of the ellipse in \mathbb{R}^2 (on the *xy*-plane). (b) Draw a rough sketch of the surface with axes in standard position in \mathbb{R}^3 . **This surface is called an elliptic cylinder in** \mathbb{R}^3 .

(a) The equation can be rewritten as $x^2/2^2 + y^2/3^2 = 1$. It represents the ellipse with horizontal radius 2 and vertical radius 3 on the *xy*-plane.



(b)

Problem 6.

(a) Find an equation of the sphere with center (1,0,−2) and radius 3.
(b) What is the intersection of the sphere with the plane x = 3? Write its equation and describe the curve.

(a)
$$(x-1)^2 + y^2 + (z+2)^2 = 9$$

(b) We can obtain the equation of the intersection of the sphere with the plane x = 3 by substituting x = 3 into the equation of the sphere. We have

$$(3-1)^2 + y^2 + (z+2)^2 = 9 \quad \Rightarrow \quad y^2 + (z+2)^2 = 5.$$

The equation $y^2 + (z+2)^2 = 5$ represents the a circle of radius $\sqrt{5}$ centered at the point (0, -2) on the *yz*-plane.

Problem 7.

(a) Verify all of your answers in part (b) for problems 1-6 by plotting the surfaces/curves in Maple.

See the following pages.

