
MAT 1505 (Dr. Fuentes) Worksheet 7 - Section 7.8 - PART 2

Section 7.8: Trigonometric Integrals

TYPE 2 Improper Integrals are of the form ∫ b

a
f (x)dx,

where the function f has any kind of discontinuity over the finite interval [a, b].

Problem 2. Determine whether the integral is convergent or divergent. Evaluate the integrals thst are
convergent.

(a)
∫ π/2

0

cos(θ)√
sin(θ)

dθ, (b)
∫ 1

0
r ln(r)dr.

(a) Since
√

sin(π/2) = 0, the function f (θ) = cos(θ)/
√

sin(θ) has a discontinuity at θ = π/2. Then
we express ∫ π/2

0

cos(θ)√
sin(θ)

dθ = lim
t→(π/2)−

∫ t

0

cos(θ)√
sin(θ)

dθ

Let us find
∫ t

0
cos(θ)√

sin(θ)
dθ. Since the function inside the integral does not appear to be a familiar derivative

of some antiderivative, we will try u-substitution. Let

u = sin(θ) ⇒ du = cos(θ)dθ.

Substituting the limits of integration, we have

θ = t ⇒ u = cos(t) and θ = 0 ⇒ u = cos(0) = 1.

Then our definite integral becomes∫ t

0

cos(θ)√
sin(θ)

dθ =
∫ cos(t)

1
u−1/2 du = 2u1/2

]cos(t)

1
= 2

(√
cos(t)− 1

)
.

Then ∫ π/2

0

cos(θ)√
sin(θ)

dθ = lim
t→(π/2)−

2
(√

cos(t)− 1
)
= 2

(√
cos(π/2)− 1

)
= 1(0 − 1) = −2,

since f (t) = cos(t) is continuous everywhere (meaning we can directly plug in t = π/2).

(b) Since y = ln(r) has a vertical asymptote at r = 0, i.e., an infinite discontinuity at r = 0, then we
write ∫ 1

0
r ln(r)dr = lim

t→0+

∫ 1

t
ln(r)dr.
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Let us find
∫ 1

t ln(r)dr. Note that the function f (r) = r ln(r) does not appear to be a familiar derivative
of some antiderivative, and also, a u-substitution will not help us compute the definite integral, since the
derivative d

dr ln(r) = 1/r does not appear in the integral. Therefore, we will solve the integral using
integration by parts. Since y = ln(r) does not have a familiar antiderivative, let

u = ln(r) ⇒ du =
1
r

dr and dv = r ⇒ v =
∫

r dr =
1
2

r2.

Then ∫ 1

t
ln(r)dr =

∫ 1

t
u dv = uv

]1

t
−

∫ 1

t
v du =

1
2

r2 ln(r)
]1

t
−

∫ 1

t

1
2

r2 1
r

dr

=
1
2

r2 ln(r)
]1

t
− 1

2

∫ 1

t
r dr

=
1
2

r2 ln(r)
]1

t
− 1

4
r2
]1

t

=
1
2

t2 ln(t)− 1
2

12 ln(1)−
(

1
4

12 − 1
4

t2
)

=
1
2

t2 ln(t)− 1
4
+

1
4

t2.

Then ∫ 1

0
r ln(r)dr = lim

t→0+

(
1
2

t2 ln(t)− 1
4
+

1
4

t2
)

=
1
2

lim
t→0+

t2 ln(t)− lim
t→0+

1
4
+

1
4

lim
t→0+

t2.

Note that lim
t→0+

1
4
=

1
4

and lim
t→0+

t2 = 02 = 0. However,

as t → 0+ ⇒ t2 → 0 and ln(t) → −∞,

meaning that the limit lim
t→0+

t2 ln(t) is in 0 ·∞ indeterminate form. Therefore, we can apply L’Hospital’s

Rule to the limit. We have

lim
t→0+

t2 ln(t) = lim
t→0+

ln(t)
t−2 = lim

t→0+

t−1

−2t−3 = lim
t→0+

−1
2

t2 = −1
2

02 = 0.

Then ∫ 1

0
r ln(r)dr =

1
2

lim
t→0+

t2 ln(t)− lim
t→0+

1
4
+

1
4

lim
t→0+

t2 =
1
2
· 0 − 1

4
− 1

4
· 0 = −1

4
.
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Using the Comparison Theorem

Problem 3. Use the Comparison Theorem to determine whether the integral is convergent or diver-
gent. You do not have to evaluate the integral.

(a)
∫ ∞

1

1 + sin2(x)√
x

dx, (b)
∫ ∞

1

x + 1√
x4 − x

dx Hint: “Split” the integral at x = 2.

Recall the following fact, learned in class:

Note: We often use the function f (x) = 1
xp to compare with another function f to show that

∫ ∞
a f (x)dx

converges or diverges using the Comparison Theorem. More specifically:

If
1
xp ≥ f (x) and p > 1 then

∫ ∞
a f (x)dx converges

AND

if
1
xp ≤ f (x) and p ≤ 1 then

∫ ∞
a f (x)dx diverges.

(a) Note that since sin2(x) ≥ 0, then

1 + sin2(x)√
x

≥ 1 + 0√
x

=
1

x1/2

for all x ≥ 1. Then since
∫ ∞

1

1
x1/2 dx is divergent, by the Comparison Theorem,

∫ ∞

1

1 + sin2(x)√
x

dx is

also divergent.

(b) The function f (x) = x+1√
x4−x

has a discontinuity at x = 1, since f (1) is undefined. Then if we
express ∫ ∞

1

x + 1√
x4 − x

dx =
∫ 2

1

x + 1√
x4 − x

dx +
∫ ∞

2

x + 1√
x4 − x

dx,

note that I1 =
∫ 2

1
x+1√
x4−x

dx is a Type 2 integral and I2 =
∫ ∞

2
x+1√
x4−x

dx is a Type 1 integral. We will show

that I2 is divergent using the Comparison Theorem, which will imply that the original integral
∫ ∞

1
1

x1/2 dx
is divergent.
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Note that
x + 1√
x4 − x

≥ x + 1√
x4

≥ x√
x4

=
x

(x4)1/2 =
x
x2 =

1
x

.

We claim that
∫ ∞

2
1
x dx is divergent. Suppose this is not the case; that is, suppose that

∫ ∞
2

1
x is convergent.

Then since ∫ ∞

1

1
x

dx =
∫ 2

1

1
x

dx +
∫ ∞

2

1
x

dx,

and the integrals
∫ 2

1
1
x dx and

∫ ∞
2

1
x dx are convergent (the former is because it is not improper and is

a definite integral), this implies that
∫ ∞

1
1
x dx, which is a contradiction! This contradicts the fact that∫ ∞

1
1
x dx is divergent! Therefore,

∫ ∞
2

1
x dx is divergent.

Therefore, by the Comparison Theorem, I2 is divergent, and hence,
∫ ∞

1
x+1√
x4−x

dx = I1 + I2 is diver-
gent.
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