Section 14.2: Limits & Continuity of 2-Variable Functions

Problem 1. Show that the following limits **do not exist**.
(a)
$$\lim_{(x,y)\to(0,0)} \frac{y^2 \sin^2(x)}{x^4 + y^4}$$
 (b) $\lim_{(x,y)\to(1,1)} \frac{y-x}{1-y+\ln(x)}$ (c) $\lim_{(x,y,z)\to(0,0,0)} \frac{xy+yz^2+xz^2}{x^2+y^2+z^2}$

Problem 2.

(a) Show that
$$\lim_{(x,y)\to(1,0)} (x-1)^2 \cos\left(\frac{1}{y}\right) = 0.$$
 (b) Show that $\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}} = 0.$

Problem 3. Determine the set of points at which the function is continuous.

(a)
$$F(x,y) = \frac{xy}{1 + e^{x-y}}$$
 (b) $g(x,y) = \frac{e^x + e^y}{e^{xy} - 1}$
(c) $f(x,y) = \begin{cases} \frac{xy}{x^2 + xy + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$

Section 14.3: Partial Derivatives

Problem 4. Find the partial derivatives of the following functions: (a) $f(x,y) = y(x + x^2y)^5$ (b) $u(r,\theta) = \sin\left(\frac{r\cos(\theta)}{\theta^2}\right)$ (c) $w = xy^2e^{-xz}$

Problem 5. Let $f(x, y, z) = x^{yz}$. Find $\frac{\partial^2 f}{\partial z \partial x}$ at the point (e, 1, 0).

HINT: Remember the following differentiation formula from Calculus I: $\frac{d}{dt}b^t = \ln(b)b^t$, where b > 0

Problem 6. Find all the second partial derivatives of
$$z = \frac{y}{2x+3y}$$
.
In class, we found that $\frac{\partial z}{\partial x} = -\frac{2y}{(2x+3y)^2}$ and $\frac{\partial z}{\partial y} = \frac{2x}{(2x+3y)^2}$.

Problem 7. Find the indicated partial derivative. **HINT:** You can change the order of differentiation using Clairaut's Theorem.

$$w = \sqrt{u + v^2} + u \sin^2(t);$$
 $\frac{\partial^4 w}{\partial v^2 \partial t \partial u}$

Problem 8. Let $f(x, y) = 16 - 4x^2 - y^2$.

(a) Use trace curves to determine the graph of *f*.

(b) Find $f_x(1,2)$ and $f_y(1,2)$ and interpret these numbers as slopes of tangent lines to trace curves.